Amorphization in quenched ice VIII: A first-principles study

نویسندگان

  • Koichiro Umemoto
  • Renata M. Wentzcovitch
چکیده

Ice VIII is a high-density form of H2O that amorphizes upon heating after being decompressed to 0 kbar. Here we investigate by first principles the structural and vibrational properties of ice VIII under decompression. We have reproduced the peculiar nonlinear behavior of some stretching and translational modes under decompression and relate this behavior to the eminent collapse of the hydrogen-bond networks. We also find that the transverse acoustic phonon branches almost collapse and are nearly unstable at 0 kbar. This is the sign of imminent amorphization, similar to that uncovered in a-quartz under pressure near the amorphous transition. By means of quasi-harmonic free energy calculations we also investigate its thermal equation of state and show, for the first time, the effect of zero point motion and temperature on its structure. The level of agreement between theoretical and experimental results is unprecedented in this class of materials. This is crucial to clarifying the relationship between amorphization and acoustic phonon collapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical study of the isostructural transformation in ice VIII

We present a first-principles study of the structural and vibrational properties of D2O-ice VIII. We do not confirm the existence of the structural discontinuity that was proposed on the basis of a neutron diffraction study and of a first principles calculation, although we reproduce well other physical properties, including the nonlinear behavior of phonon frequencies below 3 GPa. This study b...

متن کامل

Radiation-induced amorphization of crystalline ice

We study radiation-induced amorphization of crystalline ice, analyzing the results of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of ...

متن کامل

The glass-to-liquid transition of the emulsified high-density amorphous ice made by pressure-induced amorphization.

Emulsified high-density amorphous ice, made by pressure-induced amorphization of emulsified ice Ih, was decompressed at about 160 K. The onset of an endothermic event was observed around 0.4 GPa during the decompression. This is consistent with existence of the glass transition to a liquid state, implying the close relationship between melting and amorphization.

متن کامل

Is High-Density Amorphous Ice Simply a "Derailed" State along the Ice I to Ice IV Pathway?

The structural nature of high-density amorphous ice (HDA), which forms through low-temperature pressure-induced amorphization of the "ordinary" ice I, is heavily debated. Clarifying this question is important for understanding not only the complex condensed states of H2O but also in the wider context of pressure-induced amorphization processes, which are encountered across the entire materials ...

متن کامل

On the state of water ice on saturn's moon Titan and implications to icy bodies in the outer solar system.

The crystalline state of water ice in the Solar System depends on the temperature history of the ice and the influence of energetic particles to which it has been exposed. We measured the infrared absorption spectra of amorphous and crystalline water ice in the 10-50 K and 10-140 K temperature ranges, respectively, and conducted a systematic experimental study to investigate the amorphization o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004